Henry/mcp-memory-service
Built by Metorial, the integration platform for agentic AI.
Henry/mcp-memory-service
Server Summary
Semantic memory storage
Persistent data storage
Semantic search
Context management for conversations
An intelligent MCP server providing semantic memory, persistent storage, and autonomous memory consolidation for Claude Desktop. This service combines ChromaDB/SQLite-vec storage with a revolutionary dream-inspired consolidation system that automatically organizes, compresses, and manages memories over time, creating a self-evolving knowledge base.
Get started in 2 minutes with direct memory commands!
# Install with Claude Code commands
python install.py --install-claude-commands
# Start using immediately
claude /memory-store "Important decision about architecture"
claude /memory-recall "what did we decide last week?"
claude /memory-search --tags "architecture,database"
claude /memory-health
⨠5 conversational commands following CCPlugins pattern
š Zero MCP server configuration required
š§ Context-aware operations with automatic project detection
šØ Professional interface with comprehensive guidance
ā”ļø Quick Start Guide | Full Integration Guide
Dashboard screenshot coming soon - shows modern gradient design with live stats, interactive endpoint cards, and tech stack badges
Access the Dashboard:
http://localhost:8000
http://mcp-memory-service.local:8000
http://localhost:8000/api/docs
_mcp-memory._tcp.local.
advertisement/memory-store
, /memory-recall
, /memory-search
, /memory-context
, /memory-health
_mcp-memory._tcp.local.
delete_by_tag
to support both single and multiple tagsdelete_by_tags
(OR logic) and delete_by_all_tags
(AND logic)Method | Best For | Setup Time | Features |
---|---|---|---|
Docker | Production, Multi-platform | 2 minutes | ā Isolated, ā Multi-client ready |
Smithery | Claude Desktop users | 1 minute | ā Auto-config, ā One command |
Python Installer | Developers, Customization | 5 minutes | ā Hardware detection, ā Full control |
uvx | Temporary use, Testing | 3 minutes | ā No virtual env, ā Clean install |
The new unified installer automatically detects your hardware and selects the optimal configuration:
# Clone the repository
git clone https://github.com/doobidoo/mcp-memory-service.git
cd mcp-memory-service
# Create and activate a virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Run the intelligent installer
python install.py
# ⨠NEW: Multi-client setup is now integrated!
# You'll be prompted to configure universal MCP client access
# for Claude Desktop, VS Code, Continue, and other MCP applications
For Intel Macs: For detailed setup instructions specific to Intel Macs, see our Intel Mac Setup Guide. Intel Mac users should also check out our Legacy Intel Mac Scripts for specialized startup scripts.
For Legacy Hardware (2013-2017 Intel Macs):
python install.py --legacy-hardware
For Server/Headless Deployment:
python install.py --server-mode
For HTTP/SSE API Development:
python install.py --enable-http-api
For Migration from ChromaDB:
python install.py --migrate-from-chromadb
For Multi-Client Setup:
# Automatic multi-client setup during installation
python install.py --setup-multi-client
# Skip the interactive multi-client prompt
python install.py --skip-multi-client-prompt
For Claude Code Commands:
# Install with Claude Code commands (prompts if CLI detected)
python install.py --install-claude-commands
# Skip the interactive Claude Code commands prompt
python install.py --skip-claude-commands-prompt
MCP Memory Service supports two optimized storage backends:
Best for: 2015 MacBook Pro, older Intel Macs, low-memory systems, Docker deployments
Best for: Modern Macs (M1/M2/M3), GPU-enabled systems, production deployments
The installer automatically recommends the best backend for your hardware, but you can override with:
python install.py --storage-backend sqlite_vec # Lightweight
python install.py --storage-backend chromadb # Full-featured
The easiest way to run the Memory Service is using our pre-built Docker images:
# Pull the latest image
docker pull doobidoo/mcp-memory-service:latest
# Run with default settings (for MCP clients like Claude Desktop)
docker run -d -p 8000:8000 \
-v $(pwd)/data/chroma_db:/app/chroma_db \
-v $(pwd)/data/backups:/app/backups \
doobidoo/mcp-memory-service:latest
# Run in standalone mode (for testing/development)
docker run -d -p 8000:8000 \
-e MCP_STANDALONE_MODE=1 \
-v $(pwd)/data/chroma_db:/app/chroma_db \
-v $(pwd)/data/backups:/app/backups \
doobidoo/mcp-memory-service:latest
We provide multiple Docker Compose configurations for different scenarios:
docker-compose.yml
- Standard configuration for MCP clients (Claude Desktop)docker-compose.standalone.yml
- Standalone mode for testing/development (prevents boot loops)docker-compose.uv.yml
- Alternative configuration using UV package managerdocker-compose.pythonpath.yml
- Configuration with explicit PYTHONPATH settings# Using Docker Compose (recommended)
docker-compose up
# Standalone mode (prevents boot loops)
docker-compose -f docker-compose.standalone.yml up
If you need to build the Docker image yourself:
# Build the image
docker build -t mcp-memory-service .
# Run the container
docker run -p 8000:8000 \
-v $(pwd)/data/chroma_db:/app/chroma_db \
-v $(pwd)/data/backups:/app/backups \
mcp-memory-service
You can install and run the Memory Service using uvx for isolated execution:
# Install uv (which includes uvx) if not already installed
pip install uv
# Or use the installer script:
# curl -LsSf https://astral.sh/uv/install.sh | sh
# Install and run the memory service
uvx mcp-memory-service
# Or install from GitHub
uvx --from git+https://github.com/doobidoo/mcp-memory-service.git mcp-memory-service
Windows users may encounter PyTorch installation issues due to platform-specific wheel availability. Use our Windows-specific installation script:
# After activating your virtual environment
python scripts/install_windows.py
This script handles:
To install Memory Service for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @doobidoo/mcp-memory-service --client claude
For comprehensive installation instructions and troubleshooting, see the Installation Guide.
Add the following to your claude_desktop_config.json
file:
{
"memory": {
"command": "uv",
"args": [
"--directory",
"your_mcp_memory_service_directory", // e.g., "C:\\REPOSITORIES\\mcp-memory-service"
"run",
"memory"
],
"env": {
"MCP_MEMORY_CHROMA_PATH": "your_chroma_db_path", // e.g., "C:\\Users\\John.Doe\\AppData\\Local\\mcp-memory\\chroma_db"
"MCP_MEMORY_BACKUPS_PATH": "your_backups_path" // e.g., "C:\\Users\\John.Doe\\AppData\\Local\\mcp-memory\\backups"
}
}
}
For Windows users, we recommend using the wrapper script to ensure PyTorch is properly installed:
{
"memory": {
"command": "python",
"args": [
"C:\\path\\to\\mcp-memory-service\\memory_wrapper.py"
],
"env": {
"MCP_MEMORY_CHROMA_PATH": "C:\\Users\\YourUsername\\AppData\\Local\\mcp-memory\\chroma_db",
"MCP_MEMORY_BACKUPS_PATH": "C:\\Users\\YourUsername\\AppData\\Local\\mcp-memory\\backups"
}
}
}
For a lighter-weight configuration that doesn't require PyTorch:
{
"memory": {
"command": "python",
"args": ["-m", "mcp_memory_service.server"],
"cwd": "/path/to/mcp-memory-service",
"env": {
"MCP_MEMORY_STORAGE_BACKEND": "sqlite_vec",
"MCP_MEMORY_SQLITE_PATH": "/path/to/mcp-memory/sqlite_vec.db",
"MCP_MEMORY_BACKUPS_PATH": "/path/to/mcp-memory/backups",
"MCP_MEMORY_USE_ONNX": "1",
"PYTHONPATH": "/path/to/mcp-memory-service"
}
}
}
The wrapper script will:
NEW: Deploy MCP Memory Service for multiple clients sharing the same memory database!
Perfect for distributed teams, multiple devices, or cloud deployment:
# Install and start HTTP/SSE server
python install.py --server-mode --enable-http-api
export MCP_HTTP_HOST=0.0.0.0 # Allow external connections
export MCP_API_KEY="your-secure-key" # Optional authentication
python scripts/run_http_server.py
ā Benefits:
Access via:
http://your-server:8000/api/docs
http://your-server:8000/
Direct SQLite on cloud storage DOES NOT WORK for multi-client access:
ā File locking conflicts - Cloud sync breaks SQLite's locking mechanism
ā Data corruption - Incomplete syncs can corrupt the database
ā Sync conflicts - Multiple clients create "conflicted copy" files
ā Performance issues - Full database re-upload on every change
ā Solution: Use centralized HTTP server deployment instead!
For detailed deployment guides, configuration options, and troubleshooting:
š Multi-Client Deployment Guide
Covers:
For detailed instructions on how to interact with the memory service in Claude Desktop:
The memory service is invoked through natural language commands in your conversations with Claude. For example:
With the optional Claude Code commands installed, you can also use direct command syntax:
# Store information with context
claude /memory-store "Important architectural decision about database backend"
# Recall memories by time
claude /memory-recall "what did we decide about the database last week?"
# Search by tags or content
claude /memory-search --tags "architecture,database"
# Capture current session context
claude /memory-context --summary "Development planning session"
# Check service health
claude /memory-health
See the Invocation Guide for a complete list of commands and detailed usage examples.
The MCP Memory Service supports multiple storage backends to suit different use cases: