Nulab Inc/backlog-mcp-server
Built by Metorial, the integration platform for agentic AI.
Nulab Inc/backlog-mcp-server
Server Summary
Project management
Issue tracking
Wiki page management
Git repository management
Pull request management
Notification management
Watching list management
š ę„ę¬čŖć§ć®ćå©ēØć¬ć¤ć
A Model Context Protocol (MCP) server for interacting with the Backlog API. This server provides tools for managing projects, issues, wiki pages, and more in Backlog through AI agents like Claude Desktop / Cline / Cursor etc.
The easiest way to use this MCP server is through MCP configurations:
{
"mcpServers": {
"backlog": {
"command": "docker",
"args": [
"run",
"--pull", "always",
"-i",
"--rm",
"-e", "BACKLOG_DOMAIN",
"-e", "BACKLOG_API_KEY",
"ghcr.io/nulab/backlog-mcp-server"
],
"env": {
"BACKLOG_DOMAIN": "your-domain.backlog.com",
"BACKLOG_API_KEY": "your-api-key"
}
}
}
}
Replace your-domain.backlog.com
with your Backlog domain and your-api-key
with your Backlog API key.
ā If you cannot use --pull always, you can manually update the image using:
docker pull ghcr.io/nulab/backlog-mcp-server:latest
Clone and install:
git clone https://github.com/nulab/backlog-mcp-server.git
cd backlog-mcp-server
npm install
npm run build
Set your json to use as MCP
{
"mcpServers": {
"backlog": {
"command": "node",
"args": [
"your-repository-location/build/index.js"
],
"env": {
"BACKLOG_DOMAIN": "your-domain.backlog.com",
"BACKLOG_API_KEY": "your-api-key"
}
}
}
}
You can selectively enable or disable specific toolsets using the --enable-toolsets
command-line flag or the ENABLE_TOOLSETS
environment variable. This allows better control over which tools are available to the AI agent and helps reduce context size.
The following toolsets are available (enabled by default when "all"
is used):
Toolset | Description |
---|---|
space | Tools for managing Backlog space settings and general information |
project | Tools for managing projects, categories, custom fields, and issue types |
issue | Tools for managing issues and their comments |
wiki | Tools for managing wiki pages |
git | Tools for managing Git repositories and pull requests |
notifications | Tools for managing user notifications |
You can control toolset activation in the following ways:
Using via CLI:
--enable-toolsets space,project,issue
Or via environment variable:
ENABLE_TOOLSETS="space,project,issue"
If all is specified, all available toolsets will be enabled. This is also the default behavior.
Using selective toolsets can be helpful if the toolset list is too large for your AI agent or if certain tools are causing performance issues. In such cases, disabling unused toolsets may improve stability.
š§© Tip:
project
toolset is highly recommended, as many other tools rely on project data as an entry point.
If you're using the MCP server with AI agents, you can enable dynamic discovery of toolsets at runtime:
Enabling via CLI:
--dynamic-toolsets
Or via environment variable::
-e DYNAMIC_TOOLSETS=1 \
With dynamic toolsets enabled, the LLM will be able to list and activate toolsets on demand via tool interface.
space
Tools for managing Backlog space settings and general information.
get_space
: Returns information about the Backlog space.get_users
: Returns list of users in the Backlog space.get_myself
: Returns information about the authenticated user.project
Tools for managing projects, categories, custom fields, and issue types.
get_project_list
: Returns list of projects.add_project
: Creates a new project.get_project
: Returns information about a specific project.update_project
: Updates an existing project.delete_project
: Deletes a project.issue
Tools for managing issues, their comments, and related items like priorities, categories, custom fields, issue types, resolutions, and watching lists.
get_issue
: Returns information about a specific issue.get_issues
: Returns list of issues.count_issues
: Returns count of issues.add_issue
: Creates a new issue in the specified project.update_issue
: Updates an existing issue.delete_issue
: Deletes an issue.get_issue_comments
: Returns list of comments for an issue.add_issue_comment
: Adds a comment to an issue.get_priorities
: Returns list of priorities.get_categories
: Returns list of categories for a project.get_custom_fields
: Returns list of custom fields for a project.get_issue_types
: Returns list of issue types for a project.get_resolutions
: Returns list of issue resolutions.get_watching_list_items
: Returns list of watching items for a user.get_watching_list_count
: Returns count of watching items for a user.wiki
Tools for managing wiki pages.
get_wiki_pages
: Returns list of Wiki pages.get_wikis_count
: Returns count of wiki pages in a project.get_wiki
: Returns information about a specific wiki page.add_wiki
: Creates a new wiki page.git
Tools for managing Git repositories and pull requests.
get_git_repositories
: Returns list of Git repositories for a project.get_git_repository
: Returns information about a specific Git repository.get_pull_requests
: Returns list of pull requests for a repository.get_pull_requests_count
: Returns count of pull requests for a repository.get_pull_request
: Returns information about a specific pull request.add_pull_request
: Creates a new pull request.update_pull_request
: Updates an existing pull request.get_pull_request_comments
: Returns list of comments for a pull request.add_pull_request_comment
: Adds a comment to a pull request.update_pull_request_comment
: Updates a comment on a pull request.notifications
Tools for managing user notifications.
get_notifications
: Returns list of notifications.get_notifications_count
: Returns count of notifications.reset_unread_notification_count
: Resets unread notification count.mark_notification_as_read
: Marks a notification as read.Once the MCP server is configured in AI agents, you can use the tools directly in your conversations. Here are some examples:
Could you list all my Backlog projects?
Create a new bug issue in the PROJECT-KEY project with high priority titled "Fix login page error"
Show me the details of the PROJECT-KEY project
List all Git repositories in the PROJECT-KEY project
Show me all open pull requests in the repository "repo-name" of PROJECT-KEY project
Create a new pull request from branch "feature/new-feature" to "main" in the repository "repo-name" of PROJECT-KEY project
Show me all items I'm watching
You can override the descriptions of tools by creating a .backlog-mcp-serverrc.json
file in your home directory.
The file should contain a JSON object with the tool names as keys and the new descriptions as values.
For example:
{
"TOOL_ADD_ISSUE_COMMENT_DESCRIPTION": "An alternative description",
"TOOL_CREATE_PROJECT_DESCRIPTION": "Create a new project in Backlog"
}
When the server starts, it determines the final description for each tool based on the following priority:
BACKLOG_MCP_TOOL_ADD_ISSUE_COMMENT_DESCRIPTION
).backlog-mcp-serverrc.json
- Supported configuration file formats: .json, .yaml, .ymlSample config:
{
"mcpServers": {
"backlog": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e", "BACKLOG_DOMAIN",
"-e", "BACKLOG_API_KEY",
"-v", "/yourcurrentdir/.backlog-mcp-serverrc.json:/root/.backlog-mcp-serverrc.json:ro",
"ghcr.io/nulab/backlog-mcp-server"
],
"env": {
"BACKLOG_DOMAIN": "your-domain.backlog.com",
"BACKLOG_API_KEY": "your-api-key"
}
}
}
}
You can export the current default translations (including any overrides) by running the binary with the --export-translations flag.
This will print all tool descriptions to stdout, including any customizations you have made.
Example:
docker run -i --rm ghcr.io/nulab/backlog-mcp-server node build/index.js --export-translations
or
npx github:nulab/backlog-mcp-server --export-translations
A sample Japanese configuration file is provided at:
translationConfig/.backlog-mcp-serverrc.json.example
To use it, copy it to your home directory as .backlog-mcp-serverrc.json:
You can then edit the file to customize the descriptions as needed.
Alternatively, you can override tool descriptions via environment variables.
The environment variable names are based on the tool keys, prefixed with BACKLOG_MCP_ and written in uppercase.
Example: To override the TOOL_ADD_ISSUE_COMMENT_DESCRIPTION:
{
"mcpServers": {
"backlog": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e", "BACKLOG_DOMAIN",
"-e", "BACKLOG_API_KEY",
"-e", "BACKLOG_MCP_TOOL_ADD_ISSUE_COMMENT_DESCRIPTION"
"ghcr.io/nulab/backlog-mcp-server"
],
"env": {
"BACKLOG_DOMAIN": "your-domain.backlog.com",
"BACKLOG_API_KEY": "your-api-key",
"BACKLOG_MCP_TOOL_ADD_ISSUE_COMMENT_DESCRIPTION": "An alternative description"
}
}
}
}
The server loads the config file synchronously at startup.
Environment variables always take precedence over the config file.
Add prefix to tool names with:
--prefix backlog_
or via environment variable:
PREFIX="backlog_"
This is especially useful if you're using multiple MCP servers or tools in the same environment and want to avoid name collisions. For example, get_project can become backlog_get_project to distinguish it from similarly named tools provided by other services.
--optimize-response
Or environment variable:
OPTIMIZE_RESPONSE=1
Then, request only specific fields:
get_project(projectIdOrKey: "PROJECT-KEY", fields: "{ name key description }")
The AI will use field selection to optimize the response:
get_project(projectIdOrKey: "PROJECT-KEY", fields: "{ name key description }")
Benefits:
Large responses are automatically limited to prevent exceeding token limits:
MAX_TOKENS
environment variableYou can change this using:
MAX_TOKENS=10000
If a response exceeds the limit, it will be truncated with a warning.
Note: This is a best-effort mitigation, not a guaranteed enforcement.
This section demonstrates advanced configuration using multiple environment variables. These are experimental features and may not be supported across all MCP clients. This is not part of the MCP standard specification and should be used with caution.
{
"mcpServers": {
"backlog": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e", "BACKLOG_DOMAIN",
"-e", "BACKLOG_API_KEY",
"-e", "MAX_TOKENS",
"-e", "OPTIMIZE_RESPONSE",
"-e", "PREFIX",
"-e", "ENABLE_TOOLSETS",
"ghcr.io/nulab/backlog-mcp-server"
],
"env": {
"BACKLOG_DOMAIN": "your-domain.backlog.com",
"BACKLOG_API_KEY": "your-api-key",
"MAX_TOKENS": "10000",
"OPTIMIZE_RESPONSE": "1",
"PREFIX": "backlog_",
"ENABLE_TOOLSETS": "space,project,issue",
"ENABLE_DYNAMIC_TOOLSETS": "1"
}
}
}
}
npm test
src/tools/
following the pattern of existing toolssrc/tools/tools.ts
The server supports several command line options:
--export-translations
: Export all translation keys and values--optimize-response
: Enable GraphQL-style field selection--max-tokens=NUMBER
: Set maximum token limit for responses--prefix=STRING
: Optional string prefix to prepend to all tool names (default: "")--enable-toolsets
: Specify which toolsets to enable (comma-separated or multiple arguments). Defaults to "all".
Example: --enable-toolsets space,project
or --enable-toolsets issue --enable-toolsets git
Available toolsets: space
, project
, issue
, wiki
, git
, notifications
.Example:
node build/index.js --optimize-response --max-tokens=100000 --prefix="backlog_" --enable-toolsets space,issue
This project is licensed under the MIT License.
Please note: This tool is provided under the MIT License without any warranty or official support.
Use it at your own risk after reviewing the contents and determining its suitability for your needs.
If you encounter any issues, please report them via GitHub Issues.