Adel Zaalouk/mcp-docling
Built by Metorial, the integration platform for agentic AI.
Adel Zaalouk/mcp-docling
Server Summary
Convert documents from URLs or local paths to markdown format
Extract tables from documents
Process multiple files efficiently
An MCP server that provides document processing capabilities using the Docling library.
You can install the package using pip:
pip install -e .
Start the server using either stdio (default) or SSE transport:
# Using stdio transport (default)
mcp-server-lls
# Using SSE transport on custom port
mcp-server-lls --transport sse --port 8000
If you're using uv, you can run the server directly without installing:
# Using stdio transport (default)
uv run mcp-server-lls
# Using SSE transport on custom port
uv run mcp-server-lls --transport sse --port 8000
The server exposes the following tools:
convert_document: Convert a document from a URL or local path to markdown format
source
: URL or local file path to the document (required)enable_ocr
: Whether to enable OCR for scanned documents (optional, default: false)ocr_language
: List of language codes for OCR, e.g. ["en", "fr"] (optional)convert_document_with_images: Convert a document and extract embedded images
source
: URL or local file path to the document (required)enable_ocr
: Whether to enable OCR for scanned documents (optional, default: false)ocr_language
: List of language codes for OCR (optional)extract_tables: Extract tables from a document as structured data
source
: URL or local file path to the document (required)convert_batch: Process multiple documents in batch mode
sources
: List of URLs or file paths to documents (required)enable_ocr
: Whether to enable OCR for scanned documents (optional, default: false)ocr_language
: List of language codes for OCR (optional)qna_from_document: Create a Q&A document from a URL or local path to YAML format
source
: URL or local file path to the document (required)no_of_qnas
: Number of expected Q&As (optional, default: 5)WATSONX_PROJECT_ID
: Your Watson X project IDWATSONX_APIKEY
: Your IBM Cloud API keyWATSONX_URL
: The Watson X API URL (default: https://us-south.ml.cloud.ibm.com)get_system_info: Get information about system configuration and acceleration status
https://github.com/user-attachments/assets/8ad34e50-cbf7-4ec8-aedd-71c42a5de0a1
You can use this server with Llama Stack to provide document processing capabilities to your LLM applications. Make sure you have a running Llama Stack server, then configure your INFERENCE_MODEL
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.types.shared_params.url import URL
from llama_stack_client import LlamaStackClient
import os
# Set your model ID
model_id = os.environ["INFERENCE_MODEL"]
client = LlamaStackClient(
base_url=f"http://localhost:{os.environ.get('LLAMA_STACK_PORT', '8080')}"
)
# Register MCP tools
client.toolgroups.register(
toolgroup_id="mcp::docling",
provider_id="model-context-protocol",
mcp_endpoint=URL(uri="http://0.0.0.0:8000/sse"))
# Define an agent with MCP toolgroup
agent_config = AgentConfig(
model=model_id,
instructions="""You are a helpful assistant with access to tools to manipulate documents.
Always use the appropriate tool when asked to process documents.""",
toolgroups=["mcp::docling"],
tool_choice="auto",
max_tool_calls=3,
)
# Create the agent
agent = Agent(client, agent_config)
# Create a session
session_id = agent.create_session("test-session")
def _summary_and_qna(source: str):
# Define the prompt
run_turn(f"Please convert the document at {source} to markdown and summarize its content.")
run_turn(f"Please generate a Q&A document with 3 items for source at {source} and display it in YAML format.")
def _run_turn(prompt):
# Create a turn
response = agent.create_turn(
messages=[
{
"role": "user",
"content": prompt,
}
],
session_id=session_id,
)
# Log the response
for log in EventLogger().log(response):
log.print()
_summary_and_qna('https://arxiv.org/pdf/2004.07606')
The server caches processed documents in ~/.cache/mcp-docling/
to improve performance for repeated requests.